skip to main content


Search for: All records

Creators/Authors contains: "Toriello, Alejandro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cloud computing has motivated renewed interest in resource allocation problems with new consumption models. A common goal is to share a resource, such as CPU or I/O bandwidth, among distinct users with different demand patterns as well as different quality of service requirements. To ensure these service requirements, cloud offerings often come with a service level agreement (SLA) between the provider and the users. A SLA specifies the amount of a resource a user is entitled to utilize. In many cloud settings, providers would like to operate resources at high utilization while simultaneously respecting individual SLAs. There is typically a trade-off between these two objectives; for example, utilization can be increased by shifting away resources from idle users to “scavenger” workload, but with the risk of the former then becoming active again. We study this fundamental tradeoff by formulating a resource allocation model that captures basic properties of cloud computing systems, including SLAs, highly limited feedback about the state of the system, and variable and unpredictable input sequences. Our main result is a simple and practical algorithm that achieves near-optimal performance on the above two objectives. First, we guarantee nearly optimal utilization of the resource even if compared with the omniscient offline dynamic optimum. Second, we simultaneously satisfy all individual SLAs up to a small error. The main algorithmic tool is a multiplicative weight update algorithm and a primal-dual argument to obtain its guarantees. We also provide numerical validation on real data to demonstrate the performance of our algorithm in practical applications. 
    more » « less
  2. Abstract

    We study theone‐warehouse multi‐retailerproblem under deterministic dynamic demand and concave batch order costs, where order batches have an identical capacity and the order cost function for each facility is concave within the batch. Under appropriate assumptions on holding cost structure, we obtain lower bounds via a decomposition that splits the two‐echelon problem into single‐facility subproblems, then propose approximation algorithms by judiciously recombining the subproblem solutions. For piecewise linear concave batch order costs with a constant number of slopes we obtain a constant‐factor approximation, while for general concave batch costs we propose an approximation within a logarithmic factor of optimality. We also extend some results to subadditive order and/or holding costs.

     
    more » « less